Bahamas Maritime Authority

Report of the investigation into the constructive total loss of the Bahamas registered chemical tanker "Panam Serena" at the port of Porto Torres in Sardinia, Italy on 01 January 2004
FOREWORD

The investigation into the explosions and subsequent fire on board the Bahamas Registered chemical tanker "Panam Serena" was conducted, to the greatest possible extent, under the provisions of The Merchant Shipping Act of the Commonwealth of The Bahamas.

The casualty occurred in the port of Porto Torres in Sardinia, Italy on the 01 January 2004 and the Flag State investigation has been severely hampered by the legal process adopted immediately after the casualty by the Italian Criminal Court of Inquiry into the accident, which imposed severe restrictions on all aspects of the casualty, including related data and personnel involved. Therefore, this report relies upon the limited access Bahamas Inspectors were able to gain to the terminal, vessel and crew immediately following the casualty, prior to the Court restrictions being imposed, the good cooperation of the owners and the Italian Court Surveyors Report published in July 2005. The Bahamas Maritime Authority arranged for a technical review of the Italian Court Surveyors Report, which was published in Italian and for relevant sections to be translated from Italian to English, as appropriate.

The Bahamas Maritime Authority investigates incidents at sea for the purpose of discovering lessons which may be learned with a view to preventing any repetition. It is not the purpose of the investigation to establish liability or to apportion blame, except in so far as it emerges as part of the process of investigating the incident.

It should be noted that section 170(2) of the Merchant Shipping Act requires officers of a ship involved in an accident to answer an Inspector’s questions fully and truthfully. If the contents of a report were subsequently submitted as evidence in court proceedings relating to an accident this would offend the principle that a person cannot be required to give evidence against himself. The Bahamas Maritime Authority makes this report available to interested parties on the strict understanding that it will not be used as evidence in any court proceedings anywhere in the world.

Date of Issue: April 2006

Bahamas Maritime Authority
Latham House
16 Minories
LONDON
EC3N 1EH
United Kingdom
CONTENTS

Glossary of Abbreviations

1. Summary
2. Particulars of Vessel
3. Narrative of events
4. Analysis
5. Conclusions
6. Recommendations

Appendices:
I. Photographs of the fire caused by the explosions and the subsequent, catastrophic damage to the vessel after the explosions and fire.
II. Marflex deep-well pump.
III. Company ISM procedures.
IV. Benzene; Safety Data Sheets.
V. Cut C6; Safety Data Sheets.
Glossary of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>Constructive Total Loss</td>
</tr>
<tr>
<td>CCR</td>
<td>Cargo Control Room</td>
</tr>
<tr>
<td>C6</td>
<td>Cut C6 - a Benzene type product</td>
</tr>
<tr>
<td>VRL</td>
<td>Vapour Return Line</td>
</tr>
</tbody>
</table>
1. **SUMMARY**

1.1. **The Bahamas registered chemical tanker "Panam Serena"** which was built in Turkey, entered service in June 2003, exploded and caught fire at Porto Torres, Sardinia in Italy on 01 January 2004. The catastrophic damage caused resulted in the vessel being declared a constructive total loss (CTL), two crew members were tragically killed and one was injured.

1.2. **The "Panam Serena" had arrived at Porto Torres** on 31 December 2003 with a cargo of Benzene and Cut C6 (C6), the Benzene discharge had been complete and the vessel was close to completion of discharge of the C6. All cargo tanks were loaded upon arrival at Porto Torres, except No.4C tank which was washed, clean and dry.

1.3. **At approximately 11:55 on 01 January 2004**, as the cargo deck watch was changing, the vessel was shaken by the first in a series of violent explosions, which resulted in an intense fire amidships, within the cargo tank area of the vessel.

1.4. **The duty 3rd Mate and relieving 2nd Mate** were handing over the cargo watch in the cargo control room (CCR), which overlooked the main deck at the time of the first explosion. The seaman on duty and the seaman taking over the deck watch were outside on the main deck and were both tragically killed in the series of explosions. The Chief Mate, who was resting in his cabin at the time, was injured.

1.5. **The Master** and remainder of the crew who were all within the aft accommodation area managed to escape from the vessel by jumping over the stern into the water, then climbing into the stern launch freefall lifeboat, which had automatically launched due to the extreme force of the explosions which wracked the vessel.

1.6. **The fire** was eventually brought under control by the shore based emergency fire services, however they were unable to save the two seamen on the maindeck or prevent extensive damage to the vessel and the terminal jetty due to the intense nature of the fire which followed the series of explosions.

1.7. **Due to the catastrophic damage** caused to the vessel (which can be seen in the photographs attached to this report) it has been extremely difficult to identify the exact cause of the initial explosion; however a number of possible causes were identified and are covered within this report.
2.1 **“Panam Serena” was a Type 2 Chemical Tanker** registered at Nassau, Bahamas, of welded steel construction having a raised forecastle. The accommodation and machinery spaces were situated at the after end of the vessel. She had the following principal particulars:

- Official Number: 8000650
- IMO Number: 9282687
- Length overall: 118.37 metres
- Length BP: 112.06 metres
- Breadth: 19.00 metres
- Depth: 10.10 metres
- Gross Tonnage: 6522 tonnes
- Net Tonnage: 3220 tonnes
- Deadweight: 10018 tonnes
- Call Sign: C6SY9

2.2 **She was powered by MAN B&W diesel main engine**, Type 6535 MC that developed 4440 kW (3265 bhp), which drove a single fixed-bladed propeller and generated an estimated vessel speed of 14 kts. She had 3 auxiliary generators and 1 shaft generator that developed a total of 2000 kW.

2.3 **The cargo** was carried in 12 tanks that were arranged as per the enclosed plans (see page 6). Each tank was fitted with an individual Marflex deep-well pump, as per the diagram in Appendix II.

2.4 **The vessel was built in 2003** at Tuzla, Turkey and was formerly named "Clipper Leander". At the time of the incident she was owned by Leander Shipping Co. Ltd., and managed by BR Marine A/S.

2.5 **The new vessel was first registered** under the Bahamas Flag in June 2003 and was entered with ABS Classification Society. At the time of the casualty she complied with all the statutory and international requirements and certification.

2.6 "Panam Serena" was last subjected to a Bahamas Maritime Authority Annual Inspection at the Port of Rotterdam on 18 December 2003, while loading her last cargo and just prior to the casualty. The following observations were made:

- Nil deficiencies.

2.7 **Being a relatively new ship** there were no Port State Control inspections records for the vessel within the Paris MOU database.
"Clipper Legend" (sister vessel):-
3. NARRATIVE OF EVENTS

3.1 Introduction; All times noted in this narrative are given in the style of the standard 24 hour clock without additional annotation and as local time, which was UTC+1. Any other timing is noted in brackets. The vessel was built in Turkey and was one of the first Chemical Tankers built by the shipyard, with three similar vessels having already been delivered. The "Panam Serena" was built under the supervision of ABS, one of the premier IACS Classification Societies with considerable experience in the construction and classification of this type of vessel. The weather at the time of the incident was good and the vessel was nearing the end of a routine discharge operation at Porto Torres in Sardinia, Italy, when the incident occurred.

3.2 The voyage to Porto Torres; The vessel loaded its cargo of Benzene (2,091 tonnes) and C6 (6,300 tonnes) at Rotterdam and Dunkirk, without incident, as per the cargo plan on page 6, for a full discharge at Porto Torres. The vessel had undergone a satisfactory Bahamas Flag State inspection while loading at Rotterdam, nil deficiencies had been noted. All cargo tanks were utilized for loading the cargoes except No.4 Centre tank. This tank was not required for the quantity of cargo which was being carried and some repairs were required to the tank coating. These repairs were completed during the sea passage from northern Europe to the Mediterranean. The sea passage was uneventful and the vessel arrived on the morning of the 31 December 2003, being all fast at Berth No.18, Platform B in Porto Torres at 08:50.

3.3 Arrival and discharge operation; upon arrival the vessel berthed, was made fast by the dock workers without incident and the usual port arrival formalities were observed. The shore gangway was placed on board between the vessel and quay, port clearance was arranged via the Harbour Masters Office and the cargo surveyor attended on board. Cargo measurement and sampling were then completed. The cargo and vapour return pipelines were connected by the terminal staff in preparation for the discharge of the cargo.

3.4 The connection of the ship / shore electrical continuity bonding cable; connected between the quay and the vessel by the terminal personnel is a part of the usual vessel arrival routine at Porto Torres. This is a requirement of the terminal procedures, there is some doubt that the connection of the bonding cable was made or made correctly upon the vessel's arrival.

3.5 The vessel started discharging the C6 at about 16:00 and started discharging the Benzene at 18:00 on the 31 December 2003, the discharge operation was proceeding in a routine manner up until the time of the first and reportedly, the most violent, in a series of approximately four explosions.
3.6 **The initial incident;** the first and largest explosion happened towards the end of the discharge operation at approximately 11:55 on the 01 January 2004.

3.7 **The cargo tank status** at the time of the incident was as follows:-

- **Deck Slop Tanks, Port and Starboard:** empty.
- **No.1 Centre:** Benzene - fully discharged and empty.
- **No.2 Port:** C6 - fully discharged and empty.
- **No.2 Starboard:** C6 - fully discharged and empty.
- **No.3 Port:** Benzene - fully discharged and empty.
- **No.3 Starboard:** Benzene - fully discharged and empty.
- **No.4 Centre:** Washed, cleaned and dried prior to arrival - empty.
- **No.5 Port:** C6 - fully discharged and empty.
- **No.5 Starboard:** C6 - fully discharged and empty.
- **No. 6 Port:** C6 - a small quantity of cargo was still remaining on board in this tank, which was being discharged in stripping mode.
- **No.6 Starboard:** C6 - fully discharged and empty.
- **No.7 Port:** C6 - approximately 170 tonnes of cargo was still remaining on board in this tank, which was being discharged, in addition to No.6 Port.
- **No.7 Starboard:** C6 - approximately 90 tonnes of cargo was still remaining on board in this tank, which was also still being discharged, in addition to No.6 Port and No.7 Port.

See cargo tank diagram over on page 6:-
3.8 Cargo Tank diagram, showing cargo distribution upon vessels arrival:
3.9 **The Master, Officers and crew;** the master, officers and crew of were from Latvia and Russia, the two seamen who died both being from Latvia. All crew members had a good understanding of both Russian and English; there were no language or communication difficulties on board the vessel.

3.10 **The majority of the crew** had joined the vessel during October and November 2003, so were reasonably familiar with the vessel. There was a very high level of experience amongst the master, officers and crew on all types of tankers, oil, chemical and gas, with most of the crew members on board having extensive chemical tankers experience. The average age of the crew was 39. The vessel was very well manned with a fit, able, well experienced and qualified crew which complied with all statutory requirements.

3.11 **The Crew** compliment consisted of:-

<table>
<thead>
<tr>
<th>Role</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>1 x</td>
</tr>
<tr>
<td>Chief Mate</td>
<td>1 x</td>
</tr>
<tr>
<td>OOW Navigation</td>
<td>2 x</td>
</tr>
<tr>
<td>Chief Engineer</td>
<td>1 x</td>
</tr>
<tr>
<td>2nd Engineer</td>
<td>1 x</td>
</tr>
<tr>
<td>Electrical Engineer</td>
<td>1 x</td>
</tr>
<tr>
<td>Total Officers</td>
<td>7 x</td>
</tr>
<tr>
<td>Pumpman</td>
<td>1 x</td>
</tr>
<tr>
<td>Motorman</td>
<td>1 x</td>
</tr>
<tr>
<td>Cook</td>
<td>1 x</td>
</tr>
<tr>
<td>Seamen</td>
<td>4 x</td>
</tr>
<tr>
<td>Steward</td>
<td>1 x</td>
</tr>
<tr>
<td>Total Ratings</td>
<td>8 x</td>
</tr>
<tr>
<td>Total Crew Complement</td>
<td>15 x</td>
</tr>
</tbody>
</table>
3.12 The watch system adopted on board the "Panam Serena" for cargo operations at Porto Torres was satisfactory, ensuring that there were sufficient crew members on duty at all times and that they were adequately rested in between duty periods, as detailed below:

<table>
<thead>
<tr>
<th>Crew Member</th>
<th>Duty Period</th>
<th>Location at time of first explosion 11:55 01/01/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>0900 - 2300</td>
<td>On duty, having lunch.</td>
</tr>
<tr>
<td>Chief Mate</td>
<td>2300 - 0900</td>
<td>Off duty, asleep in cabin.</td>
</tr>
<tr>
<td>2nd Mate</td>
<td>12 - 06 (x 2)</td>
<td>Ready to start duty, in CCR and taking over the deck watch from the 3rd Mate.</td>
</tr>
<tr>
<td>3rd Mate</td>
<td>06 - 12 (x 2)</td>
<td>On duty, in CCR and handing over the deck watch to the 2nd Mate</td>
</tr>
<tr>
<td>Chief Engineer</td>
<td>06 - 12 (x 2)</td>
<td>On duty, having lunch.</td>
</tr>
<tr>
<td>2nd Engineer</td>
<td>12 - 06 (x 2)</td>
<td>Off duty, having lunch.</td>
</tr>
<tr>
<td>Electrical Engineer</td>
<td>06 - 12 (x 2)</td>
<td>On duty, having lunch.</td>
</tr>
<tr>
<td>Pumpman</td>
<td>6 hour watches as required for port cargo operations.</td>
<td>On duty, having lunch.</td>
</tr>
<tr>
<td>Motorman</td>
<td>0800 - 1800</td>
<td>On duty, at lunch break.</td>
</tr>
<tr>
<td>Seamen No.1 (deceased)</td>
<td>06 - 12 (x 2)</td>
<td>On duty & on main deck, handing over the deck watch to Seaman No.2.</td>
</tr>
<tr>
<td>Seamen No.2 (deceased)</td>
<td>12 - 06 (x 2)</td>
<td>On main deck & ready to start duty, taking over the deck watch from Seaman No.1.</td>
</tr>
<tr>
<td>Seamen No.3</td>
<td>06 - 12 (x 2)</td>
<td>Towards end of his duty period and in the accommodation.</td>
</tr>
<tr>
<td>Seamen No.4</td>
<td>12 - 06 (x 2)</td>
<td>Due to start duty shortly and in the accommodation.</td>
</tr>
<tr>
<td>Cook</td>
<td>AM - PM</td>
<td>On duty, briefly visiting his cabin as the midday meal was prepared and ready.</td>
</tr>
<tr>
<td>Steward</td>
<td>AM - PM</td>
<td>On duty, close to the galley.</td>
</tr>
</tbody>
</table>
3.13 **Activity on board prior to the explosion**: Up until the time of the first explosion the discharge operation was proceeding in a routine manner without any problems, the discharge of the three cargo tanks containing Benzene (No.1C, 3P & 3S) had been completed at 06:45 on the morning of 01 January 2004. The same morning at 09:30, the terminal staff had connected a fresh water hose from the jetty to the ship, for the purpose of providing fresh water to the vessel. The fresh water was used in order to flush out the hazardous / toxic cargo from the cargo discharge lines prior to disconnection; this was the usual terminal practice at Porto Torres.

3.14 **The vessel was also nearing the end of the discharge** of the final three cargo tanks of C6. The vessel was expected to complete the discharge of the C6 at around 12:45 and sail from Porto Torres at 15:00 in the afternoon of 01 January 2004.

3.15 **The time of the initial explosion** on board the "Panam Serena" could be placed quite accurately by all members of the crew because they have a common reference time with respect to the change of the watch at 12:00 and the mid-day meal. Members of the crew were either: preparing to end their watch; take over the watch; taking their meal break early or intending to eat their meal later. The split meal times were to ensure continuity of personnel coverage on duty and are common practice on most vessels around meal times; the arrangements are usually made by mutual consent.

3.16 **The two seamen who died** were outside the accommodation on the main deck, reportedly on the port side amidships in the vicinity of the vessels midships cargo manifold, the ship / shore connection through which the cargo discharge was taking place. Their bodies were recovered from the sea a long way apart, so they may not have been standing close together at the time of the initial explosion.

3.17 **Statements by the crew** members describe the sensation of the "Panam Serena" being shaken by a sharp jolt, as if the vessel had been hit or rammed by another ship, immediately followed by a single and very loud explosion. The initial explosion was quite separate and distinct from the series of (approximately three more) explosions which followed the initial explosion; these explosions occurred in succession between, approximately one minute and a few minutes later.

3.18 **The vessel immediately listed heavily to Starboard** at this time, with many of the crew fearing the vessel would capsize and after a brief attempted by some crew members to fight the intense fire, the crew made their way towards the stern of the vessel, in accordance with the Masters orders in preparation to abandon ship. The starboard list stabilized as the series of explosions ended (see photograph of fire fighting operation, which also show the vessel listed to starboard).

3.19 **The crew members describe the main deck** area as being engulfed by thick black smoke and high flames, which are described as having originated in the vicinity of the mid-ships section of the main deck. However, the crew
found it extremely difficult to identify the exact location of the initial explosion.

3.20 From the terminal's perspective the discharge operation had proceeded quite normally until shortly before the initial explosion on board the "Panam Serena", when the terminal were experiencing some problems on another vessel which had just arrived at Porto Torres on the morning of 01 January 2004 and was berthed close by to the "Panam Serena" at berth No.13, on Platform B. The terminal personnel on duty and monitoring the discharge operation of the "Panam Serena" were summoned by their manager to assist their colleagues on the other vessel which had just arrived. Therefore, there were no terminal personnel in attendance on the berth for the "Panam Serena", at the time that the vessel exploded.

3.21 The subsequent fire; following the series of explosions there was an intense fire generating thick black smoke, which caused additional substantial damage to the vessel and the terminal berth. The brief attempt by some crew members to fight the fire was abandoned when the vessel listed heavily to starboard, they believed that the vessel was going to capsize and were ordered to proceed to the stern and abandon ship by the Master. The fire fighting was then taken on by the shore based emergency services, who responded to the emergency calls made by the terminal personnel.

3.22 The damage; caused on board the "Panam Serena" by the explosions and subsequent fire, particularly within the main deck and cargo tank area of the ship was catastrophic. The selection of photographs attached to this report demonstrates the difficulties which have hampered investigators trying to determine the initial cause and location of the first explosion.

3.23 Drug and alcohol tests; performed on all members of the crew by the Italian Authorities following the casualty, including the two seamen who were tragically killed, were completely negative. During the Italian Police investigation on board the vessel, no alcoholic beverages of any description were found anywhere on board, the police search included store rooms, recreational areas and crew cabins. The police findings were in line with Company policy, which prohibited drugs and alcohol on board the vessel.

3.24 Smoking; there was a safe smoking room provided on board the vessel, located within the vessels accommodation and situated close to the galley, this room was utilized by crew members on board the vessel who smoked. There was no indication that any crew member was smoking on board the vessel in an unauthorized area.
4.1 The experience of the crew; the majority of the crew were very well experienced in all types of tanker operations, especially chemical tanker operations and it is unlikely that the casualty was the result of crew error, misconduct and / or negligence during the course of the discharge operation. A smoking room was provided on board the vessel, in the accommodation near to the galley, which was utilized by the crew members who smoked, all drug and alcohol tests conducted by the Italian Authorities were completely negative. There was no alcohol found on board. The crew were well experienced with the regulations and requirements for the loading, carriage and discharge of extremely hazardous cargoes and the safe operation of chemical tankers.

4.2 The location of the initial explosion; the catastrophic damage caused to the vessel indicates that the explosions took place inside the cargo tanks. The eyewitness evidence obtained by both the Italian Police and the Bahamas Approved Inspector who attended the scene immediately following the casualty, place the location of the first explosion in the amidships area of the vessel or slightly forward of amidships. This was in the vicinity of the vessel's cargo discharge manifold, within the cargo tank section of the vessel. The witnesses clearly described the initial explosion and fire as taking place at some distance away from the vessel's accommodation. The majority of the crew were located within the accommodation and witnessed the initial explosive damage, together with the early stages of the fire. There is substantial evidence proving that further explosions took place within other cargo tanks, some of which still contained cargo and were closer to the vessel's accommodation, as the emergency situation quickly escalated.

4.3 Emergency stop; the duty officer on cargo watch (3rd Mate) and relief officer (2nd Mate) taking over the cargo watch were both in the CCR at the start of the incident, which over-looked the main-deck area through a forward facing porthole. They were in the process of handing over the cargo watch when the first explosion occurred and following the initial shock, they immediately realised the severity of the situation and pressed the vessel's emergency stop button, which stops the cargo pumps and halts the discharge operation from within the CCR. The emergency stop was activated less than a minute, after the first explosion took place.

4.4 The cargo tanks; the majority of the cargo tanks had been discharged and were empty of cargo at the time of the first explosion, however the empty tanks were still full of potentially volatile vapour both from the small amount of residual cargo remaining within the tanks and due to the fact that vapour had been returned to the vessel via the vapour return line (VRL) from the terminal, throughout the discharge operation. A VRL is often utilized in hazardous chemical cargo loading and discharge operations, in order to retain the hazardous cargo vapour within a closed cycle, returning the vapour from the shore to the ship, as in this incident, or visa versa. There were only
three cargo tanks still being discharged with a relatively small quantity of C6 cargo remaining in each these were - 6P, 7P & 7S.

4.5 **The cargo pumps:** the cargo pumps fitted to the "Panam Serena" were Marflex deepwell pumps, i.e. each cargo tank was fitted with its own discharge pump. The Marflex pumps are designed to extract the maximum amount of product from each tank and are fitted with a main discharge line, as well as a narrower stripping line. Upon nearing completion of discharge when the bulk of the product has been discharged from a tank, the valves are set to the stripping mode, the main discharge line is purged with inert gas or air and the final quantity of product is discharged ashore via the separate and smaller stripping pipeline, minimizing the cargo residue remaining within the tank.

4.6 **The Terminal personnel:** there was some confusion surrounding the actual connection of the ship / shore electrical continuity bonding cable upon the vessels arrival amongst the terminal personnel. The requirement to attach a bonding cable between the jetty and vessels is incorporated within the terminal procedures; responsibility for making the connection lies with the terminal and is made by the terminal personnel upon the vessels arrival. In addition to making the actual physical connection / disconnection of the cable in a safe manner with the circuit open, the terminal personnel must check that the cable is functioning correctly on an indicator panel, located on the jetty and fitted with red and green indicator lights. These lights would indicate when the circuit for electrical continuity was open or closed, that the earth connection had been made safely and correctly.

4.7 **The connection of the bonding cable** is usually the first operation to be performed after the gangway has been placed on board, when the vessel has received port clearance, prior to the connection of the cargo hoses and start of the discharge operation. However, no members of the terminal personnel on duty at the time can remember who made and checked the connection or state categorically that they were the person who made the connection. Although a number of terminal personnel stated that they were sure the connection had been made, probably by someone else.

4.8 **Some members of the ships staff** stated that the connection of the bonding cable was not made between the terminal and the ship. It should be noted that the industry recommendations are that "Bonding Cables" **should not** be used between the terminal berth and the vessel.

4.9 **Electrical discontinuity between the terminal jetty and vessel:** there is sufficient evidence to demonstrate that it is possible for a large static or electrical charge to have accumulated within the structure of the "Panam Serena" during the course of the discharge operation. There is a substantial amount of safety guidance on this subject available to the industry (which is not repeated within this report) including, the "International Safety Guide for Oil Tankers and Terminals" (ISGOTT) and the International Chamber of Shipping (ICS) "Tanker Safety Guide (Chemicals)" which while taken as the industry standards are not internationally enforced. Investigators also took
into account other industry guidance, including a report published by the USCG "Static Electric Discharge Hazard On Bulk Oil Tank Vessels" which examines previous similar incidents, the circumstances surrounding them and makes reference to the National Fire Protection Associations "NFPA 77: Recommended Practice on Static Electricity". Many of the circumstances which were contributory to previous accidents are also evident in the case of the "Panam Serena", including:

i The dangers associated with the loading, carriage and discharge of refined liquid products, which tend to be "Static Accumulators". Charge generation and separation occur when the liquid moves in contact with other materials, such as piping etc. The risk is increased during the early stages of loading and when "stripping" the tanks during discharge, when the tanks are at their lowest level.

ii The dangers associated with the introduction of impurities into a liquid product, such as water. Static is generated through friction with the water droplets, producing a high voltage at the liquid interface. Water, was used to flush the lines of hazardous cargo upon completion of discharge. The water hose had been connected from the terminal to the vessel for this operation.

iii The release of air and / or inert gas into a liquid can generate a strong electrostatic charge, by bubbling action and agitation of the fluid. This was a standard practice required within the operating procedure for the deepwell pumps fitted on board. The vessel was fitted with a small supply of nitrogen in bottles, it has not been ascertained if air or nitrogen was utilized from the ship or shore supply during this operation.

iv Within the Italian Criminal Courts report on the casualty, great emphasis was placed upon the correct connection of the bonding cable by the terminal. However the ICS and ISGOTT guidance on this subject is that, a ship/shore bonding cable is not effective as a safety device and may even be dangerous! A ship/shore bonding cables should therefore not be used. ICS and ISGOTT acknowledges that although the dangers associated with ship/shore bonding cables are widely recognised, attention is drawn to the fact that some national and local regulations may still require them to be used. The terminal procedures at Porto Torres required the "Panam Serena" to be fitted with a bonding cable supplied by the terminal, to try and ensure electrical continuity between the terminal and the ship. This cable was probably not connected, or if it was connected it is possible that it was not correctly connected upon the vessels arrival.

v The terminal was utilizing a bonding cable within their procedures, attempting to achieve electrical continuity between the terminal and the vessels which berthed alongside. There was no indication within any reports that "insulation flanges" were used within the discharge hose string and in view of the terminal policy for electrical continuity, the use
of insulation flanges, would seem unlikely. Insulation flanges are generally used where the terminal policy is to insulate the vessel from the terminal, in order to create electrical discontinuity.

vi Benzene / C6 vapour is heavier than air and it is quite possible that towards the end of the discharge operation that volatile vapour had accumulated around the vessel. A VRL was in use, returning cargo vapour under pressure, to the vessel from the shore tanks. One of the seamen who had been on deck duty and was killed in the accident, had been wearing a gas-vapour mask, commonly used on chemical tankers. This may indicate the presence of gas vapour around the deck area or that an access to a cargo tank was being opened for operational reasons. Cargo tank 6P was stripping and the crew were in the process of preparing the fresh water hose for line flushing. The good weather conditions prevailing at the time would have contributed to any accumulation of gas vapour around the vessel.

vii No mention has been made within the terminal personnel statements with respect to any cathodic protection fitted to the jetty; if fitted, cathodic protection is another source of difference in electrical potential between vessel and terminal jetty.

4.10 The analysis of the "bonding cable"; examination of the bonding cable by investigators determined that it was partly corroded internally and not well maintained, this corrosion would have affected its electrical continuity, even if it had been connected between the terminal and the vessel correctly. The examination of the bonding cable also determined that it had suffered heat damage as a result of the fire, due to the transmission of heat along a length of the cable from the metal clamp, which was usually used to connect the cable to the vessel on the terminal berth.

4.11 Industry guidelines; there were differing statements from the crew with respect to the bonding cable, some believed (in accordance with the ICS and ISGOTT guidelines) that such cables were no longer required and should not be used. The terminal personnel believe it should have been used, but were unsure who (if anyone) connected the cable. This is reflective of the general confusion surrounding the use of bonding cables, particularly when the national or local regulations are not in line with the current industry guidelines. Vessels travelling between locations and countries are often subject to national or local policy, rather than international regulations, which should be in accordance with the latest recommended and current industry best practice.

4.12 The analysis of the damage; the series of photographs attached to the report are a selection of the many available and only indicative of the massive damage caused to the vessel following the series of violent explosions. From the damaged caused it has been determined that a series of explosions took place inside the cargo tanks. It has not been possible to determine the exact source of the initial explosion.
4.13 **Further investigative work** is still required to establish if there was a problem with one of the deepwell cargo pumps. There was some evidence to suggest that this may have been the case, however the overwhelming evidence within the witness statements, with respect to the location of the initial explosion and fire is not consistent with the theory that a cargo pump problem caused the initial explosion.
5 CONCLUSIONS

5.1 Probable causes; the most probable cause of the initial explosion was due to a static or electrical discharge of sufficient strength to create an ignition source within a volatile environment which had developed on board the vessel. Igniting an air / Benzene and / or C6 vapour mixture, which being heavier than air, had accumulated within the vicinity of the vessel. While the majority of the cargo had been discharged, the vessel's tanks were full of Benzene and C6 vapour, which had been returned to the vessel from the shore reception tanks throughout the discharge operation.

5.2 The sequence and accumulation of factors; the factors outlined within this report probably led to the initial explosion, taken in isolation each may not have been so catastrophic, however together they led to the tragic incident and loss of life.

5.3 The best practice industry guidance; the guidance issued by ICS and ISGOTT with respect to the recommended precautions concerning electrical continuity, the use of bonding cables and / or electrical insulation (including, insulation flanges) between the jetty and the vessel was disregarded by the terminal operator.

5.4 The vessels crew did not check and confirm with the terminal that the bonding cable was in good condition and correctly connected in order to ensure the safety of the vessel. While there was a clear terminal responsibility, with respect to the application of national and local requirements, the Master, Officers and Crew had a duty to ensure the safety of the vessel and those on board.
6 RECOMMENDATIONS

6.1 The "Panam Serena" due to her size was not required to be fitted with a nitrogen inert gas system, such systems are not mandatory on Chemical tankers of this tonnage. However the owners / managers, following this incident have fitted nitrogen inert gas systems to all subsequent vessels of this size and class. There is an obvious cost implication with respect to this action, which the owners have decided to accept in order to enhance safety. The responsible and expert industry bodies are expected to submit their views and proposals to IMO, on the requirements for all chemical tankers to be fitted with Nitrogen inert gas systems.

6.2 There is a clear need for agreement on International Standards to be adopted with respect to the precautions required to minimize the risks associated with static, electrical charge generation and discharge. The safety precautions applicable with respect to shipping as an international industry should not be subject to differing national and local regulations, with respect to such a fundamental safety matter.

6.3 While respecting the jurisdiction and national responsibility of all States, there is a demonstrable need for coastal states to recognise the importance of good cooperation with, responsible Flag States in the case of a ship casualty. This will facilitate the safety investigation process, rather than hinder. Immediately entering into criminal proceedings, with resultant restrictions and legal implications can hinder the objectives of improved safety at sea.
APPENDIX I

Photographs of the "Panam Serena" on fire following the series of explosions on the 01 January 2004 and the subsequent, catastrophic damage to the vessel:-
“Panam Serena”
“Panam Serena”
“Panam Serena”
“Panam Serena”
APPENDIX II

MarFlex deep-well pump diagram:

When the cargo tank is empty, the cargo stripping valve has to be opened and the main cargo valve to be closed.

The remaining cargo left in the main cargo pipe is purged by means of inert gas or air via the stripping pipe into the cargo line or deck. During the purging and stripping procedure the pump should be kept running (the impeller acts as a dynamic foot valve) until the cargo pipe has been purged empty.

This procedure will guarantee an absolute minimum of remaining cargo in the pump well. Present and future IMO rules are achieved.
APPENDIX III

ISM Procedures (11.5.3) Electrical Continuity - Bonding and Earthing:

11.5.3 ELECTRICAL CONTINUITY - BONDING AND EARTHING

1. Cargoes with low electrical conductivity may be electrostatic charged by the pipeline flow. When the charged liquid flows through non-conducting flexible ship/shore connections, a part of the charge may be picked up by intermediate metal flanges and other metal parts, which are in contact with the liquid inside the hose.

2. In order to prevent the accumulation of dangerous electrical charging, all metal flanges and other metal parts must be bonded efficiently so that there is always an adequate and continuous earthing. Generally the bonding of the metal reinforcement in the hose to the flanges provides an electrical integrity to earth via the ship manifold and hull.

3. When there is an insulating flange at the shore manifold, intermediate flanges in the ship/shore hose will still be earthed by the electrical integrity to earth via the ship manifolds and hull.
APPENDIX IV

Safety Data Sheets (copy of actual SDS) for Benzene:-
SAFETY DATA SHEET

PRODUCT NAME: BENZENE

IDENTIFICATION OF THE SUBSTANCE AND OF THE COMPANY

IDENTIFICATION OF THE SUBSTANCE: BENZENE

CHEMICAL FAMILY: Aromatic Hydrocarbon

The main end use of this product is: Chemical Feedstock. You may contact the local ExxonMobil affiliate for details on the end-use you are considering.

PRODUCT DESCRIPTION:
Clear colorless liquid with characteristic aromatic odor.

SUPPLIER: ExxonMobil Chemical Holland BV
GRASP ENGELBERTLAAN 75
4837 DS BRED (NEDERLAND)
Telephone: +31(0) 76 5292603
Facsimile: +31(0) 76 5292708

This SDS has been printed in the English language and meets the EU Safety Data Sheet requirements for this product. No country specific information is included.

2 COMPOSITION/INFORMATION ON INGREDIENTS

HINCGS NUMBER: 200-753-7
CAS NUMBER: 71-43-2
3 HAZARDS IDENTIFICATION

This product is classified as dangerous, according to Directive 1999/45/EC or 67/548/EEC (see Section 15).

CLASSIFICATION/SYMBOL: TOXIC/T, COR: C1
CLASSIFICATION/SYMBOL: HIGHLY FLAMMABLE/F
R11, R45, R48/23/24/25

HEALTH HAZARDS

May cause cancer.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

PHYSICAL AND CHEMICAL HAZARDS / FIRE AND EXPLOSION HAZARDS

- Extreme hazard. Leaks of gas or spills of liquid can readily form flammable mixtures at temperatures at or above the flash point.
- Static Discharge. Product can accumulate static charges which can cause an incendiary electrical discharge.

4 FIRST AID MEASURES

INHALATION:

- Using proper respiratory protection, immediately remove the affected victim from exposure. Administer artificial respiration if breathing is stopped. Keep at rest. Call for prompt medical attention.

SKIN CONTACT:

- Flush with large amounts of water; use soap if available.
- Remove grossly contaminated clothing, including shoes, and launder before reuse.

EYES CONTACT:

- Flush eyes with large amounts of water until irritation subsides. If irritation persists, get medical attention.

INGESTION:

- If swallowed, DO NOT induce vomiting. Keep at rest. Get prompt medical attention.
SAFETY DATA SHEET

PRODUCT NAME: BENZENE

PAGE 3

SPECIAL FIRE PRECAUTIONS:
- Because of the chemical nature of this product, complete combustion rarely occurs. In a fire, large amounts of smoke and incompletely combusted material will be produced. In case of exposure to smoke or combustion products, proper breathing equipment is recommended.

HAZARDOUS COMBUSTION PRODUCTS:
No unusual

6 ACCIDENTAL RELEASE MEASURES

LAND SPILL:
- Eliminate sources of ignition. Warn occupants of downwind areas of fire and explosion hazard. Prevent liquid from entering sewers, watercourses, or low areas.
- Contain spilled liquid with sand or earth.
- Recover by pumping (use an explosion proof or hand pump) or with a suitable absorbent. If liquid is too viscous for pumping, scrape up with shovels or pails and place in suitable containers for recycle or disposal.
- Consult an expert on disposal of recovered material and ensure conformity to local disposal regulations.
- See Section 4 “FIRST AID MEASURES” as well as Section 10 “STABILITY AND REACTIVITY”.

WATER SPILL:
- Eliminate sources of ignition. Warn occupants and shipping in downwind areas of fire and explosion hazard and request them to stay clear.
- Notify port or relevant authority and keep public away. Shut off source if possible to do so without hazard. Confine if possible.

PRINT DATE: 18 September 2003

Cont.
7 HANDLING AND STORAGE

STORAGE TEMPERATURE (DegC) : Ambient
TRANSPORT TEMPERATURE (DegC) : Ambient
LOADING/UNLOADING TEMPERATURE (DegC) : Ambient

VISCOITY (cSt) : 0.80

STORAGE/TRANSPORT PRESSURE (kPa) : Atmospheric

ELECTROSTATIC ACCUMULATION HAZARD? Yes, use proper grounding procedure

USUAL SHIPPING CONTAINERS:
Tankers, barges, tank trucks/cars, rail cars

MATERIALS AND COATINGS SUITABLE:
All types of steel
Inorganic Zinc Coatings
Epoxi Phenolic
Polypropylene
Fluorinated Silicones,
Nylon 66

MATERIALS AND COATINGS UNSUITABLE:
PVC
Epoxy resin-aluminum combinations
Natural and Synthetic Rubbers
Polyethylene

Compatibility with Plastic Materials can vary; we therefore recommend that compatibility is tested prior to use.

STORAGE / HANDLING, GENERAL NOTES
- Keep container closed. Handle containers with care. Open slowly in order to control possible pressure release. Store in a cool, well-ventilated place away from incompatible materials.
- DO NOT handle, store or open near an open flame, sources of heat or...
SAFETY DATA SHEET

PRODUCT NAME: BENZENE

sources of ignition. Protect material from direct sunlight.
- Material will accumulate static charges which may cause an electrical spark (ignition source). Use proper bonding and/or grounding procedures.
- Do not pressurize, cut, heat, or weld containers. Empty product containers may contain product residue. DO NOT reuse empty containers without commercial cleaning or reconditioning.

8 EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROL MEASURES / VENTILATION
The use of local exhaust ventilation is recommended to control process emissions near the source. Laboratory samples should be handled in a lab hood. Provide mechanical ventilation of confined spaces. Use explosion-proof ventilation equipment.

OCCUPATIONAL EXPOSURE LIMITS
This product consists of a single substance with the following recognized or recommended OEL value(s):

Benzene:
TWA: 0.5 ppm (1.6 mg/m³) (Skin), ACGIH (2003).

With the Directive 97/42/EC of 27 June 1997 (OJ L 179 of 8 July 1997), the European Union has set the Occupational exposure limit of Benzene at 1 ppm (3.25 mg/m³) to be enforced by Member States no later than 27 June 2003. A transition period of 3 years is granted with limit value of 3 ppm (9.75 mg/m³) (skin).

Monitoring Equipment
Users may gather monitoring methods and related information by contacting the following authorities:

- ACGIH (American Conference of Governmental Industry Hygienists)

PERSONAL PROTECTION

GENERAL ADVICE
The use and choice of Personal Protection equipment is related to the hazard of the product, the workplace, and the way the product is handled. In general, we recommend as a minimum safety precaution that safety glasses with side-shields and work clothes protecting arms, legs and body be used. In addition, any person entering an area where this product is

PRINT DATE: 16 September 2003

Cont.
SAFETY DATA SHEET

PRODUCT NAME: BENCEINE

ExxonMobil Chemical

PAGE 5

SBS NUMBER: MDH-2-00801

REVISION: 16 May 2003

handled or processed should at least wear safety glasses with side-shields.

SPECIAL ADVICE

Based on and limited to ExxonMobil Chemical's experience of this product as such, the following special advice is believed to provide satisfactory protection for the industrial user or handler.

RESPIRATORY PROTECTION

Where concentrations in air may exceed the limits given in this section, it is recommended to use a half face filter mask or air supplied breathing apparatus to protect from overexposure by inhalation. Suitable filter material depends on the amount and type of chemicals being handled in the workplace, but filter material of type "A" or similar may be considered for use.

HAND PROTECTION

When handling this product, it is recommended to wear chemical resistant gauntlets. The choice of suitable protective gloves depends on work conditions and what chemicals are handled, but we have positive experience with gloves made of Viton (TF) or FEP. Note that PTFA degrades when in contact with water. Gloves should be replaced immediately if sign of degradation is observed.

EYE PROTECTION

When handling this product, it is recommended to wear splash resistant goggles.

SKIN/BODY PROTECTION

When handling this product, it is recommended to wear a chemical resistant jacket.

ENVIRONMENTAL EXPOSURE CONTROLS

See Section 12.

9 PHYSICAL AND CHEMICAL PROPERTIES

These are indicative values only. Please refer also to the product specification sheet.

9.1 General Information

PHYSICAL STATE: Liquid

PRINT DATE: 10 September 2003
SAFETY DATA SHEET

PRODUCT NAME: BENZENE

FORM/COLOUR: Clear colorless liquid.
ODOR: Characteristic aromatic odor.

FREEZE/MELT/POINT: 5.5 DegC
BOILING POINT RANGE: 80 DegC
VAPOR PRESSURE (50. DegC): 37 kPa
DENSITY
SPECIFIC GRAVITY (15.5 / 15.5): 0.85
VAPOR DENSITY (101.3 kPa/air=1): 2.70

VISCOITY (40 DegC): 0.70 mPa.s
EVAPORATION RATE (n-Butyl acetate = 1):

9.2 Health, Safety & Environmental Information
FLASHPOINT (TCC ASTM D56): -11 DegC
AUTOIGNITION TEMPERATURE: 861 DegC
EXPLOSIVE LIMITS (in air): between 1.3 and 7.1 Vol%
SOLUBILITY IN WATER (25 DegC): 0.18 wt%

9.3 Other Information
MOLECULAR WEIGHT: 78
CONSP. OF THERMAL EXPANSION (Liq.): 0.0 DegC/1
IS MATERIAL HYPOALLERGENIC: No

10 STABILITY AND REACTIVITY

HAZARDOUS POLYMORPHIZATIONS: No
CONDITIONS TO AVOID POLYMORPHIZATION: Not Applicable.

STABILITY: Stable
CONDITIONS TO AVOID INSTABILITY: Not Applicable.

MATERIALS AND CONDITIONS TO AVOID (INCOMPATIBILITY):
This product is intended for industrial use. Exposure to heat, air, oxidising agents and other chemicals not part of an industrial process should be avoided.

PRINT DATE: 16 September 2003

Cont.
SAFETY DATA SHEET

PRODUCT NAME: BENZENE

HAZARDOUS DECOMPOSITION PRODUCTS:
None

11 TOXICOLOGICAL INFORMATION

ACUTE:

INHALATION:
Vapor concentrations above recommended exposure levels are irritating to the eyes and the respiratory tract, and may lead to central nervous system effects (drowsiness, dizziness, nausea, headaches, convulsions, paralysis and loss of consciousness).
- If the exposure is overwhelming death due to respiratory collapse can occur almost immediately or may be delayed several hours to several days.
- May cause blood and hematopoietic system disorder (e.g. cyanosis) and/or damage.

SKIN CONTACT:
- Occasional brief contact with the liquid will not result in significant skin discomfort unless evaporation is impeded.
- Frequent or prolonged contact may defat and dry the skin, leading to irritation and dermatitis.
- Skin absorption of benzene can occur and damaged skin may facilitate the absorption of benzene. Exposure under these circumstances could contribute to any observed systemic toxicity produced by inhaling benzene.

INTRA-CONTACT:
- May cause irritation with prolonged contact.

INGESTION:
- Small amounts of liquid aspirated into the respiratory system during ingestion or from vomiting may cause bronchopneumonia or pulmonary edema.
- Minimal toxicity.

CHRONIC:
Human health studies (epidemiological) indicate that prolonged and/or repeated overexposures of benzene may cause damage to the blood producing system (particularly the bone marrow) and serious blood disorders including leukemia. Animal tests indicate that benzene does not cause malformations but may be toxic to the embryo/fetus. The relationship of the results to humans has not been established.

PRINT DATE: 18 September 2003

THE BAHAMAS MARITIME AUTHORITY
The International Agency for Research on Cancer (IARC) has evaluated benzene and found it to be a human carcinogen.

The National Toxicology Program (NTP) has evaluated benzene and found it to be a human carcinogen.

In the EU, benzene is classified as a carcinogen, category 1.

Additional information is available on special request.

12 ECOLOGICAL INFORMATION

ENVIRONMENTAL MOBILITY
This product is highly volatile and will rapidly evaporate to the air if released into the water.

ENVIRONMENTAL DEGRADABILITY
Based upon data for a similar component or preparation, or estimated data. This product is expected to biodegrade rapidly and be "readily" biodegradable according to OECD guidelines. This substance is expected to be removed in a wastewater treatment facility. This product can degrade rapidly in air.

ECOTOXICITY AND BIOACCUMULATION
Expected to be harmful to aquatic organisms. Long term adverse effects to aquatic organisms are not expected. Low potential to bioaccumulate (BCF=100)

- [SPLENDAEUM CAPITATUM] :
 EC50 29.00 mg/l (72 HOURS) (measured) (Actual Concentration) FLOW THROUGH

13 DISPOSAL CONSIDERATIONS

PRINT DATE: 18 September 2003
SAFETY DATA SHEET

PRODUCT NAME: BENZENE

The waste category of this product is '07 CS XX'. The user must be aware that the conditions of use may affect the waste classification after use. Please refer to Directive 2001/118/EC for waste nomenclature.

This product is odourless and can be burned directly in appropriate equipment. This product is suitable for recovery following appropriate recovery routes or methods.

14 TRANSPORT INFORMATION

LAND (railroad/water - RID/ADR)
CLASS: 3
CLASSIFICATION CODE: FL
Hazard ID Number: 33
Transport Document Name: UN 1114, BENZENE, 3, PG II
Emergency Action Code: 3WE

TRIMCARD PRODUCT NAME:
ExxonMobil IC Reference: 3082114

ENLARGED VEHICLES (A000/ADR)
CLASS: 3
Transport Document Name: UN 1114, BENZENE, 3, PG II, MP=6°C

SEA (IMDG)
CLASS: 3
Marine Pollutant: NO
Risk Label: 3
Transport Document Name: BENZENE, 3, UN 1114, PG II, (-33 DegC c.c.)

AIR (ICAO/IATA)
CLASS: 3
Proper Shipping Name: BENZENE

PRINT DATE: 18 September 2003

Cont.
SAFETY DATA SHEET

PRODUCT NAME: BENZENE

PAGE 11

SDS NUMBER: MDEQ-G-00001

REVISION: 16 May 2003

15 REGULATORY INFORMATION

CLASSIFICATION AND LABELLING ACCORDING TO EC DIRECTIVES

CLASSIFICATION/SYMBOL: TOXIC/1, OR: C1
CLASSIFICATION/SYMBOL: HIGHLY FLAMMABLE/Y

GOVERNING DIRECTIVE:
Dangerous Substances Directive 67/548/EC, as modified.

LABEL NAME:
Benzene

NATURE OF SPECIAL RISK
R45 May cause cancer
R11 Highly flammable
R46/23/24/25 Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

SAFETY ADVICE
S02 Keep container in a well ventilated place
S16 Keep away from sources of ignition-No Smoking
S33 Take precautionary measures against static discharges
S43A In case of fire use sand, earth, chemical powder or foam
S46 In case of accident or if you feel unwell, seek medical advice immediately (Show the label where possible)
S53 Avoid exposure - Obtain special instructions before use

Please refer to section 16 for the text of all the "X" phrases mentioned in this document

16 OTHER INFORMATION

Library of Risk phrases listed in this document.

R11 Highly flammable
R45 May cause cancer
R46/23/24/25 Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

PRINT DATE: 18 September 2003

Cont.
SAFETY DATA SHEET

PRODUCT NAME: SERENA

PAGE 12

REVISION SUMMARY:

Since 8 May 2003, this SDS has been revised in Section(s):
9, 11, 13, 14, 15

In those sections, vertical bars will indicate in the margin the text that has been changed. If a section is listed, but does not show a vertical bar, it indicates that text has been removed.

This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. The information and recommendations contained herein are to the best of ExxonMobil’s knowledge and belief accurate and reliable as of the date indicated. However, no representation, warranty or guarantee is made with regards to accuracy, reliability or completeness. Conditions of use of the material are under the control of the user; therefore, it is the user’s responsibility to satisfy himself as to the suitability and completeness of such information for his own particular use.

PRINT DATE: 18 September 2003
APPENDIX V

Safety Data Sheets (copy of actual SDS provided) for C6:-

Agence de Dunkerque
Route des Salines, Appontement charbonnier
GRANDE SYNTHE
Postal address : B.P. 1033 - 59375 DUNKERQUE Cedex 1
PHONE : + 33 3 28 26 79 00 FAX : + 33 3 28 63 33 19 TLX : 1320471
EMAIL : trampdkk@sea-invest-France.com

A: COPENHAGEN TANKERS
ATT. JEANETTE JENSEN

M/T PANAM SERENA – C6 DUNKERQUE / PUERTO TORRES

please find attached SDS for C6

best regards
J-Louis Malézieux
Direct line +33 3 28 26 79 10
Mobile +33 6 80 57 06 84
SAFETY DATA SHEET

Product: COUPE C6
Product Code: 01262
Version: 4
Date: 20/09/1995

01 - IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND THE COMPANY/UNDERTAKING

Product Name: COUPE C6
Product Code: 01262
Supplier:

02 - COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Name of the Substance: Grown
- Benzene: 75% (approximately)
- Alcohol + Cyanogen: 25% (approximately)
Hydrogen: 440/572.0

CAS: 273-266-0
EINECS:

03 - HAZARDS IDENTIFICATION

Most Important Hazards and Health Effects:
Safeguard: Please read this sheet carefully
May cause cancer.
Harmful if swallowed.
Flammable liquid.
Thermal decomposition gives: Organic derivative.
HIGHLY FLAMMABLE
TOXIC
May cause cancer.
Harmful if swallowed.

04 - FIRST AID MEASURES

General Advice:
Take off immediately all contaminated clothing.
Move to fresh air.
Get urgent medical attention if needed.
Hospitalize immediately.
Wash immediately and abundantly with soap and water.
If significant damage:
Hospitalize immediately.

Inhalation:

Skin Contact:

Eye Contact:
SAFETY DATA SHEET

Product:

COUCPE C6

Product Code: 01201

Date: 30/09/1995

EYE CONTACT

Wash immediately and thoroughly with water.

If irritation persists, consult a ophthalmologist.

INGESTION

Do not induce vomiting.

Hospitalize immediately.

In case of insufficient ventilation, wear suitable respiratory equipment.

PROTECTION OF FIRST-AIDERS

02 - FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

- Foam
- Carbon dioxide (CO2)
- Water spray

Extinguishing Media Which Are Not Suitable

High volume water jet

Flammable liquid.

Thermal decomposition gives Organic derivatives

Possible ignition of vapours from a distance.

Carbon dioxide / carbon dioxide water spray.

Do not use water.

Protect all sources of sparks and ignition. Do not smoke.

SPECIFIC METHOD

- Wear self-contained breathing apparatus and protective suit.

SPECIAL PROTECTIVE EQUIPMENT

FOR PREVENTION

06 - ACCIDENTAL RELEASE MEASURES

Personal Protection

- Exposure non-essential staff and those not equipped with individual protection apparatus.
- Prohibit all sources of sparks and ignition. Do not smoke.
- Possible contact with skin and eyes and inhalation of vapours. (Repeated exposure and/or prolonged exposure)
- Do not release into the environment.
- Do not allow water into drain.
- Contaminate by diluting.

Environmental Protection

- Perilous on site labelled emergency container.
- Absorb the remainder with an inert absorbent material (Sand, Loam. Do not use water)
- Keep waste contaminated with product in tightly closed and waterproof containers.
- Destroy the product by incineration.

METHODS FOR CLEANING UP

Recovery

Disposal

07 - HANDLING AND STORAGE

Handling

Technical measures/Precautions

- Storage and handling precautions applicable to products:
- TOXIC, FLAMMABLE, WITH VAPOURS EXPLOSIVE IN AIR
- Provide appropriate exhaust and ventilation in machinery.
- Provide showers, eye-baths.
- Provide self-contained breathing apparatus nearby. (For emergency usage)
SAFETY DATA SHEET

COUPE C6

Version 4

Page: 3 / 8
Date: 30/09/1993

Product Code: 01262

SAFETY DATA SHEET

Product: Panam Serena

SAFETY DATA SHEET

<table>
<thead>
<tr>
<th>Handling/Storage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe handling/use</td>
<td>Keep well away from naked flames. Use product only in a closed system. Do not use for transfer and recirculation of the liquid. Use a slow speed of circulation since excessive rates can lead to overheating.</td>
</tr>
<tr>
<td>Technical measures</td>
<td>Keep container tightly closed in a cool, well-ventilated place. Store in well-ventilated area. Store away from moisture and heat. Keep at temperature below 25°C. Keep away from sources of ignition. Provide a cool-down area in a designated area. Provide emergency showering of equipment and chemical equipment usable in explosive environments.</td>
</tr>
<tr>
<td>Incompatible products</td>
<td>Diamine - Bismuth perfluoride - Peroxide and - Perfluorinated sulfer perfluoride - Oxygen (liquid) - Oxidizing agents - Strong acids</td>
</tr>
</tbody>
</table>

PACKAGING MATERIALS

Recommended: Ordinary steel

08 - EXPOSURE CONTROLS / PERSONAL PROTECTION

PROTECTIVE PRECAUTIONS

CONTROL PARAMETERS

Exposure limits

Provide sufficient air exchange or/and exhaust in work area.

- Benzene:
 - France: VMD = 5 mL/m³ = 12 mg/m³
 - USA-ACGIH: TLV-TWA = 10 mg/m³

- Nitric:
 - France: VMD = 10 mg/m³ = 15 mg/m³
 - USA-ACGIH: TLV-TWA = 30 mg/m³ = 178 mg/m³

PERSONAL PROTECTION EQUIPMENT

Respiratory protection

- Wear approved respirator separate fromCan be exhaled after prolonged exposure.

Hand protection

Gloves

Eye protection

- Safety glasses

09 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE (20°C)

Liquid

COLOUR

Brown

ODOUR

Ammoniac

BOILING POINT/FRANGRE

65 °C (approximate) 60 °C (approximate)

FLASH POINT

60 °C

VAPOR PRESSURE

400 mm Hg

MELTING POINT

-20 °C

SPECIFIC GRAVITY

1.07011

STANDARD

-
SAFETY DATA SHEET

Product:

Product Code: 01352

AUTOIGNITION TEMPERATURE

<table>
<thead>
<tr>
<th>Standard</th>
<th>580 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D 2293</td>
<td></td>
</tr>
</tbody>
</table>

EXPLOSIVE LIMITS

<table>
<thead>
<tr>
<th>Lower</th>
<th>1.2% by volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>8% by volume</td>
</tr>
</tbody>
</table>

VAPOR PRESSURE

<table>
<thead>
<tr>
<th>(20 °C)</th>
<th>120 kPa (maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(37.8 °C)</td>
<td>300 kPa</td>
</tr>
<tr>
<td>(150 °C)</td>
<td>510 kPa (maximum)</td>
</tr>
<tr>
<td>(220 °C)</td>
<td>6.0 kPa</td>
</tr>
</tbody>
</table>

DENSITY

<table>
<thead>
<tr>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
</tr>
</tbody>
</table>

PARTITION COEFFICIENT (octanol/water)

OTHER DATA

<table>
<thead>
<tr>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
</tr>
</tbody>
</table>

Cryosillation: around -57°C

Soluble solvent liquid-1.7 (approximately)

Henry's constant (Benzene): 537 Fl/t/mL

10 - STABILITY AND REACTIVITY

CONDITIONS TO AVOID

- Store protected from moisture and heat.
- Keep at temperatures below 25°C.

MATERIALS TO AVOID

- Sodium, potassium, lithium, magnesium, aluminum.
- Water.
- Strong oxidizing agents.
- Chlorine, nitric acid, sulfuric acid.
- Acids, strong bases.

Hazardous Decomposition Products

- Thermal decomposition gives: Carbon derivatives.
- Product is stable at ambient temperature.

11 - TOXICOLOGICAL INFORMATION

ACUTE TOXICITY

Inhalation

- Risk of: Inhalation, respiratory distress.
- Slight irritation.
- In case of inhalation at high concentrations: Headache, dizziness, vomiting.
- In case of accidental exposure: Cool.
- In case of respiratory distress:给予i.
- Slightly irritant by inhalation.
- LC50 Inhalation: Value a mL - 423 mg/L.
SAFETY DATA SHEET

Product:

Product Code: 01262

Version: 4

Date: 20/09/1995

<table>
<thead>
<tr>
<th>EFFECTS</th>
<th>LOCAL EFFECTS</th>
<th>INHALE</th>
<th>SKIN-CONTACT</th>
<th>EYE-CONTACT</th>
<th>CHRONIC TOXICITY</th>
<th>SPECIFIC EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN MAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slightly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD50/MDL</td>
<td>0.6 - 4.7 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If significant contact:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin permeation via poppable absa offenders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjunctival system, Digestive system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACUTE TOXICITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute oral toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute dermal toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute inhalation toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHRONIC TOXICITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic oral toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic dermal toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic inhalation toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIFIC EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIFIC EFFECTS

- Skin: Slight irritation and redness may cause skin inflammation and dermatitis, due to degreasing properties of the product.
- Sensitive skin: Hypersensitive at all times.
- Introducing skin: Irritation.
- Direct contact with liquid: Treating irritation.
- Sensitive: Irritation.
- Slightly irritating to eyes, throat.
- Target organs at high dose: Central nervous system, Digestive system, Hematological system, Reproductive system.

REPRODUCTIVE TOXICITY

- Sensitive: Hypersensitive at all times.
- Introducing skin: Irritation.
- Direct contact with liquid: Treating irritation.
- Sensitive: Irritation.
- Slightly irritating to eyes, throat.
- Target organs at high dose: Central nervous system, Digestive system, Hematological system, Reproductive system.

CARTINOGENICITY

- Sensitive: Hypersensitive at all times.
- Introducing skin: Irritation.
- Direct contact with liquid: Treating irritation.
- Sensitive: Irritation.
- Slightly irritating to eyes, throat.
- Target organs at high dose: Central nervous system, Digestive system, Hematological system, Reproductive system.
SAFETY DATA SHEET

Product: COUPE C6
Product Code: 01261

Version: 4.0
Page: 6/8
Date: 20/09/1995

12 - ECOLOGICAL INFORMATION

MOBILITY

Persistence/Degradability
- In water
- In air
- In soils and sediments

Bioaccumulation
Ecotoxicity
Aquatic toxicity
Acute toxicity

Persistence/Degradability
- Biological degradability: (14 - 41) % after 14 d
- Biodegradation by OH radicals: half-life (12 - 24 - 26) h
- Site of accumulation: log Kow = 1.91
- Slightly biodegradable: log Pow = 2.12
- Phos: LC50, 96 h > 5.0 mg/l (10 mg/l)
- Harmful to aquatic: EC50, 96h = 11 mg/l
- Harmful to algae: IC20, 72 h (Diatoms: Chlamydomonas) = 20 mg/l
- Bacteria: EC50, 24 h (Monoaerononas) = 12 mg/l
- Earthworm: contact, LC50, 48 h (Eisenia fetida) = 98 mg/l

TERRESTRIAL TOXICITY
Acute toxicity

13 - DISPOSAL CONSIDERATIONS

Disposal of Product
- Keep waste containers with product is tightly closed and covered container.
- Do not mix the product by incineration.

14 - TRANSPORT INFORMATION

Consult ELF ATOCHEM's safety department for any further information

UN Number
ADR/AIM

Precautions

IMDG

Precautions

DATA

Precautions

"Panam Serena"
15 - REGULATORY INFORMATION

<table>
<thead>
<tr>
<th>EC Directive</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90/126/EEC amended by 93/69/EEC</td>
<td>Dangerous substance and preparations</td>
</tr>
<tr>
<td>93/64/EEC amended by 94/54/EEC E3(67)</td>
<td>T. TOXIC</td>
</tr>
<tr>
<td></td>
<td>R.311</td>
</tr>
<tr>
<td></td>
<td>R.46</td>
</tr>
<tr>
<td></td>
<td>R.22</td>
</tr>
<tr>
<td></td>
<td>S.16</td>
</tr>
<tr>
<td></td>
<td>S.33</td>
</tr>
<tr>
<td></td>
<td>S.24</td>
</tr>
</tbody>
</table>

Note: Annex I

<table>
<thead>
<tr>
<th>EC No. (General Inventories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-22/195</td>
</tr>
</tbody>
</table>

16 - OTHER INFORMATION

Recommended Uses

- Organic synthesis
- Pharmaceutical/Pharmaceutical use: W. A. BENZENE
- GS-E-name: Code: 3011

Further Information

- This product must be handled only by personnel well informed of safety conditions when used in formulations. Contact us for labelling.

This information applies to the product as such and conforming to specifications of ELF ATACHEM.

In case of formulations or mixtures, it is necessary to ascertain that a new danger will not occur.

The information contained is based on our knowledge of the product. In the event of publishing and it is given quite sincerely. However, the revision of some data is in progress.

Users advised possible additional hazards when the product is used in applications for which it was not intended. This statement only be used and supplemented for prevention and security purposes.

The references in legislative, regulatory, and codes of practice documents cannot be considered exhaustive.

It is the responsibility of the company supplying the product to bear or take the custody of the officer documents concerning the use, the performance and the handling of the product for which he alone is responsible.

It is also the responsibility of the handler of the product to pass on to any subsequent persons who will come into contact with the product.
SAFETY DATA SHEET

Product: COUPE C6
Product Code: 01362
Version: 4

Date: 20/09/1995

The Bahamian Maritime Authority